版权信息

Copyright

考试周刊杂志
  • 名称:考试周刊
  • CN:22-1381/G4
  • ISSN:1673-8918
  • 收录:中国知网 万方数据
  • 网址:www.kszktg.com

联系编辑

论文资源

当前位置:考试周刊杂志社 > 论文资源 >

浅谈数学教学中逆向思维的培养

作者:刘铭韬 沈奇男 朱 字数:4094  点击:

摘 要:逆向思维在数学教学中有着十分重要的应用,对学生思维能力的培养,创新和开拓能力的提高都有很大帮助。本文从逆向思维的逻辑关系出发,探讨了逆向思维能力在数学教材和数学教学过程中的具体体现和应用,并提出了在数学教学中保障学生逆向思维能力培养的具体办法。

关键词:逆向思维;数学教学;逻辑关系;应用

Discussion on Training of Reverse Thinking of Mathematics Teaching

Abstract: Reverse Thinking has very important applications in mathematics teaching, which provides a great help for training students’ thinking ability, and improving the innovation and development capacity. From the logic of reverse thinking, this article discuss the concrete manifestation of reverse thinking ability in mathematics Textbooks and mathematics teaching.

Keywords:reverse thinking;mathematics teaching;logic relationship;application

逆向思维是一种重要的数学思维,是孕育创造性思维的萌芽,逆向思维能力的掌握对解决生活和学习中面临的问题提供了一种主动、积极的思维方法[1]。在数学教学中,逆向思维对学生提高数学学习兴趣、培养学生创新意识有很大帮助,是学生学习和生活必备的一种思维品质[2-3]。然而,在数学教学实践中更注重正向思维的培养,而淡化逆向思维的重要性,久而久之造成学生学习数学循规蹈矩、顺向定性的去认识和感知数学,缺乏创造能力和分析能力,这种思维方式也随之应用于生活和其它学习中,极大阻碍了学生思维能力的拓展和对新生事物的认知力和适应力[2]。因此,在数学教学中要充分认识逆向思维的重要性,强化学生数学方面逆向思维的培训,完善学生的数学知识构架,激发学生的求知欲和创新精神。本文从逆向思维的重要性和数学教学中逆向思维的意义出发,探讨了数学教学中如何培养学生逆向思维的方法。

1 逆向思维的逻辑关系

“反其道而思之”是逆向思维的精髓,即从事物发生的对立面或者结果对事物进行分析,从问题结论出发对问题进行探索的思维方式。逆向思维是与正向思维相对立的,其将正向思维认知的事物在思维上向对立面方向发展,,打破习惯性的沿着事物发展的方向去思考和分析事物,而是从事物产生的结果或者效应反向思考和推断事物和结果之间的辩证效应,尤其面对一些特殊问题,从结论反向推断,逆向思考,反而会使问题简单化[1-3]。逆向思维的优点在于行业需求的普遍性、对正向思维的批判性和思维方式的新颖性,逆向思维的培养往往会增强你对事物认知的兴趣,提高自身开拓能力和创新能力,试想一下,当大多数人以习惯性的正向思维方式去看待事物或思考问题,而你运用逆向思维方式思考和解决问题,以“出奇”达到“制胜”,这种效果就会使你在行业竞争、就业选择中脱颖而出。

数学中逆向思维的应用可以分为宏观逆向思维方法和微观逆向思维方法。从辩证唯物主义来讲,事物都是对立存在的,往往互为因果,这就为分析和思考事物提供了两种思维方法——正向思维方法和逆向思维方法,宏观逆向思维方法就是从事物的辩证特性出发,突破思考框架、摆脱思维定律,形成用逆向思维去解决数学问题的思维认知,欧几里得的《几何原本》就是宏观逆向思维的产物。微观逆向思维方法是针对性解决一个数学问题,数学证明中的反证法、举反例法都是逆向思维的体现。

2 数学教学中的逆向思维培养

学生逆向思维的培养对于提高学生创新能力、培养学生兴趣爱好、加强对事物的认知能力至关重要。在数学教学中,除了学生正向思维的培养外,要消除思想束缚,大胆尝试和训练学生的逆向思维能力,在数学教学中加强对学生逆向思维的培训,养成逆向思维思考问题的习惯,并且与正向思维相结合,双向思维进行数学问题的理解和思考,是培养学生数学能力的一种体现,更是培养学生创造性思维的一种重要途径。

2.1 数学定义的正、逆思维理解

学生对数学定义的理解即是一个对新事物认知的过程,在数学教学过程中,由于老师往往以正向思维方法对数学定义进行阐述,学生对数学定义的理解仅停留在数学定义的字面意思,而缺少对定义深部的挖掘和理解。在教学过程中利用正、逆思维对学生进行数学定义的分析和讲解,列举反例,引导学生利用定义进行反向思考,判别异同和是非,培养学生的逆向思维能力。

例1:已知函数是R上的单调递减的奇函数,若,求a的取值区间?

解答:

变形为

∵是奇函数

∴,∴根据奇函数定义∴

又∵函数递减,∴

解得

2.2 数学公式、法则的逆向推断

数学公式和法则是揭示相关数量间数学关系的衔接桥梁,数学公式和法则本身上是具有正、逆两向的,正向公式和法则的运用必然会产生等量关系的建立,而数量间已经产生的定量关系也是公式和法则的逆向体现。学生对公式和法则的理解,受到固定正向思维的影响,仅仅停留在相关数量间等量关系的建立,而缺乏对公式和法则的推断、变形,更不会去利用逆向思维对公式、法则进行思考和分析。在解题过程中,除了公式、法则的正向运用外,常常面临公式、法则的逆向运用,而学生逆向思维的缺乏,增加了解题难度。

例2:已知,,求的值?

解答:=27/16

该题运用的主要为同底数幂除法性质和幂的乘方性质,逆向思维进行计算,不仅提高了运算速度,而且对结果的正确性更有把握,如果利用正向思维进行解答,这道题无从下手。类似题目的练习不仅提高了对公式、法则的认识和熟练程度,还在很大程度上培养了学生逆向思维的能力。

2.3 数学解题方法中正、逆思维的运用

数学是一门灵活学科,对于数学问题的解答存在多种方式,但归结起来就是正向解题和逆向解题方法,其中逆向解题法主要有逆推分析法,间接法,(排除法),等,逆推法主要运用与条件证明结论的数学问题中,反证法是经典的逆向解题方法,而间接法主要运用在选择题中。

1.逆推法的运用,对于条件推断结论的数学问题来说,从仅有的条件出发,数学问题往往不知从哪下手,很容易出现思维瓶颈,造成结论解答的困难。而逆推法是从结论出发,逆向推断结论产生所需的条件,这样往往可以简化问题,明确解题思路,并且能培养学生的逆向思维能力和解答类似数学问题的兴趣。

2.反证法的运用,首先假设结论不成立,然后利用已有的定义、公式或者法则证明结论的不成立与题目条件相矛盾,从而证明命题成立。该方法是一种很实用的证明数学命题方法,并且对培养学生逆向思维能力有很大帮助。

例3:证明:在一个三角形中,至少有一个内角小于或等于60度。

反证法解答:假设命题不成立,即三角形三个内角都大于60度;

则三个内角和必然大于180度;

这与定理“三角形内角和等于180度”相矛盾;

所以假设不成立,故原命题得证。

3.间接法(排除法),这种方法主要应用于数学竞技考试中,对于一个选择性的数学问题,正向思维解题寻找答案耗费时间较长,并且容易出错,而在竞技考试中时间是最重要的,所以可以选用将答案选项带入题目中,进行错误答案排除法。

例4:当b=1时,关于x的方程有无数多个解,则a等于( )

A:2;B:-2;C:-2/3;D不存在

该题目是典型的竞技考试选择题类型,如果正向思维解题,将b值带入方程,并进行化简和求解,耗费大量时间。而运用逆向思维方法,将答案带入到题目中,很快就会发现答案应选A。

3 逆向思维培养的保障

学生逆向思维的培养关键在于数学教学中逆向思维的日常培训,如何保障学生逆向思维的培养是数学教学需要探讨的重要问题。学生逆向思维的形成与提升主要受到周边环境的影响,这些环境包括教师教育理念、学校学习氛围、学生兴趣培养等等,不同环境影响下的学生对数学理念的认识、问题的处理和兴趣的培养有着不同的见解程度,这对学生随后的学习和生活起到很大程度的影响。数学逆向思维的培养,教师的教育理念至关重要,因为学生的思维方法受到老师的影响程度深,先进的教育理念重视运用正、逆思维思考和解决数学问题,尤其在数学定义、公式和法则的认识和讲解中,重视逆向思维的运用,并且在日常训练中,有意加深对逆向思维的练习。学校学习氛围是培养学生运用逆向思维思考兴趣的平台,学校注重学生的逆向思维培养,构建逆向思维训练对象和竞赛,培养学生的逆向思维兴趣。

4 结 论

数学教学中逆向思维的培养,对提升学生学习兴趣,激发学生创新能力和思维能力,对学生的学习和生活具有重要意义。培养学生的正、逆思维能力,可以在解答数学问题的时候,寻求更便捷的解题思路,克服了学生正向思维的固定思考模式。学生逆向思维的培养是个复杂过程,注重数学教学中逆向思维的培养,充分认识到逆向思维的学生思想、创新能力的重要性,从数学学习的兴趣培养中构建学生的逆向思维体系。

参考文献

[1]刘汉民. 论逆向思维[J]. 重庆工学院学报,2005,19(9):96-100

[2]李福兴,盘荣华. 数学中的逆向思维方法[J]. 数学教学研究,2009,28(7):62-64

[3]许娟娟. 数学教学中逆向思维能力及其培养[J]. 基础教育研究,2012,(3)上:44-46

[4]赵景伦. 数学解题中逆向思维的培养途径[J]. 数学教学通讯,2003,(8):39-40

[5]李新兴. 逆向思维训练在数学教学中的应用[J]. 江苏教育学院学报(自然学科),2011,27(1):86-88

[6]赵春雨. 高中数学教学中逆向思维的培养研究与实践[D]. 吉林师范大学,2015


浅谈企业档案管理与企业文化建设
浅谈档案管理流程
浅谈新闻宣传部门如何做好思想政治工作
浅谈19世纪末20世纪初的物理危机
浅谈互联网时代下的宣传思想政治工作新模式
浅谈如何推进农业产业化进程
浅谈文书档案管理的规范化
浅谈《紫式部日记》及其女性美
浅谈基层消防监督执法人员说理执法的实践与思考
浅谈家庭建档工作
浅谈风电场用美式箱变烧毁事故及原因分析
浅谈新形势下如何创新政治思想工作
浅谈传统村落档案的利用开发
浅谈公共图书馆展览业务的发展
浅谈民航档案现代化管理

主管单位:吉林省新闻出版局舆林报刊发展中心 主办单位:吉林省新闻出版局舆林报刊发展中心

CN:22-1381/G4 ISSN:1673-8918 考试周刊杂志社

校园英语 好家长 网站地图